292 Schroeder diffusers

Schroeder diffusers work at integer multiples of a design frequency, fu. The design
frequency is normally set as the lower frequency limit. However, it is more convenient
to present formulations in terms of the corresponding design wavelength, Ay. The depth
d, of the n™ well is determined from the sequence via the following equation:

d = Sato. (9.3)

2N
The well depths consequently vary between 0 and approximately Ao/2. The design
frequency is not the lowest frequency at which the surface produces more dispersion
than a plane surface, it is just the first frequency at which even energy diffraction lobes
can be achieved. It has been shown that Schroeder diffusers reflect differently from a
plane hard surface an octave or two below the design frequency.’*#

9.3 Some limitations and other considerations

Given the above equations, it is possible to design a diffuser to a desired bandwidth.
There are some subtle details in the design that must be heeded to achieve the best
possible diffusion.

If the period width (Nie) is too narrow, then at the first design frequency there is
only one major lobe, and so this concept of even energy lobes is rather irrelevant.
The period or repeat width is often significant in determining performance, especially
when the repeat width is small. This is illustrated in Figure 9.4 where the scattering
from diffusers of different period widths are shown. These are both N = 7 QRDs with
a design frequency of 500 Hz. The well widths are 3 and 9 cm, which means that the
period widths are 21 and 70 cm respectively. The number of periods for each diffuser
is set so that the overall widths of the devices are the same for a fair comparison. For
the narrow wells and period width, shown right, the low frequency limit of diffusion is

Figure 9.4 The pressure scattered from two QRDs at 1,000 Hz.
Left figure Right figure
QRD well width 9 cm; QRD well width 3 cm;
plane surface. plane surface.
Ovwerall width kept the same by changing number of periods.
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Figure 9.5 Normalized diffusion spectra for two QRDs showing that the lowest frequency
at which significant diffusion occurs can be determined by period width rather
than surface depth. The design frequency was 500 Hz.

determined by the period width and not by the maximum depth. This is illustrated in
Figure 9.5, where the normalized diffusion coefficient versus frequency is shown. The
narrow well width diffuser only starts causing significant diffusion over and above the
plane surface at 1.5 kHz, which is three times the design frequency. This is roughly
the frequency at which the first grating lobe appears and so is the lowest frequency
where significant scattering in oblique directions is achieved. For the wide well width,
the first grating lobe appears below the design frequency and so significant diffusion
is created at 500 Hz and above.

For the diffuser to behave “optimally’, the device must be periodic. The lobes are
generated by the periodicity of the surface. Without periodicity, all that the design
equations portray is the fact that in certain directions the scattering will have a similar
level. This is illustrated in Figure 9.6 where the scattering from one and multiple
periods of a diffuser is compared. The directions of similar level are marked. For the
periodic cases, the directions of similar level align with the lobes. For the single period
case, they are just points of identical level in the polar response; the points do not
align with the lobes. In this case, saying the levels are identical in some directions is

i

Figure 9.6 The scattering from N = 7 QRDs at 3,000 Hz for a different number of periods.
Left 1 period; middle 6 periods; right 50 periods. Locations of lobes and
directions of similar level marked by radial lines at =76, =40, =19 and 0°.
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almost a meaningless statement, because in most polar responses there will be angles
where the scattering is identical to other angles. Consequently, using one period of
the device spoils the point of using the quadratic residue sequence. Using one period
therefore causes problems with the mathematical make-up and definition of Schroeder
diffuser. However, the scattering from a single period diffuser is often more uniform
than a periodic device, as Figure 9.6 shows. This issue will be returned to later when
modulation is discussed.

If too many periods are included then the grating lobes become rather narrow; this
leads to uneven scattering because there are large nulls present (see Figure 9.6). It must
be remembered, however, that manufacturing and installation constraints are likely
to mean that a narrow base shape with a large number of repeats is going to be the
cheapest to build. Periodicity might also be preferred visually.

The points made in the last three paragraphs mean that the best design is one with
a small number of periods, say five, to ensure periodicity, but with the diffraction
lobes not too narrow. The period width must be kept large to ensure a large number
of grating lobes, which then implies a reasonably large number of wells per period.
Making the well width wide does not work as it can cause problems with specular-
like reflections at high frequencies. Alternatively, modulation schemes can be used as
discussed later in the chapter.

From the maximum frequency calculated from Equation 9.1, it might appear
as though a Schroeder diffuser should have the narrowest wells possible to get the
widest frequency range, but difficulty/cost of manufacture and absorption need to
be considered. As the diffuser wells become more narrow the viscous boundary layer
becomes significant compared to the well width and the absorption increases (see
Section 9.8). Consequently, practical well widths are atleast 2.5 cm, and usually around 5 cm.

The choice of prime number is limited by manufacturing cost, low frequency
performance and critical frequencies. For a given maximum depth d...., the design
frequency achieved is:

A C

fo=—y 2d__ (-4)

where s.,.. is the largest number in the quadratic residue sequence. The ratio of
the largest sequence number to the prime number determines the low frequency
efficiency of the device.” To take two examples: N = 7, §pma/ N = 4/7; N = 13, 5../N =
12/13. Consequently, an N = 7 diffuser will have a design frequency nearly an octave
below that of an N = 13 diffuser. It is possible, however, to manipulate some sequences
and increase the bass response. A constant phase shift can be introduced to vield a
better bass response:

s, = (r;2 + m)modulo N (9.5)

where #1 is an integer constant. Consider two N = 13 diffusers:
m=0,s,=1{0,1,4,9,3,12,10, 10, 12, 3,9, 4, 1}, Spa../N = 12/13.

m=4,s,.=1{4,5,8,0,7,3,1,1, 3,7, 0, 8, 5], Smax/N = 8/13.
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Figure 9.7 The scattering from a QRD at a critical frequency compared to a plane surface:
plane surface;

+ QRD.
The two lines overlay each other.

Consequently, the design frequency has been lowered by two-thirds by this simple
manipulation. It must be remembered, however, that this increased performance may
not be realized if the repeat width is too narrow.

For a quadratic residue diffuser, critical frequencies occur at mNf, where m = 1, 2,
3 .... These are frequencies where the diffuser behaves like a plane surface because all
the wells re-radiate in phase. This occurs when all the depths are integer multiples of
halt a wavelength. Figure 9.5 illustrates such a critical frequency happening at 3.5 kHz
in the diffusion spectrum for the narrow diffuser. Figure 9.7 shows the scattering at this
frequency. To avoid these critical frequencies, it is necessary to place the first critical
frequency above the maximum frequency of the device defined by Equation 9.1, i.e.:

C

N > (9.6)
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