Joined
·
93 Posts
Mech. Your GAIN tests made me sleepless....ok, that would be stretching it, but it made me think.
As I understand it a GAIN curve is the relative value of amount of reflected light from various angles in relation to a known ref sample of Magnesium Carbonate. So if I measure the ref sample two times and calculate the resulting GAIN I would get a 1.0 from 0-180 degrees, right? (I know, futile example but I am trying to make a point here, bare with me).
Now, lets try to do a new GAIN measurement, but with a perfect gray, say of N9. In my world that would then result in a somewhat lower value, perhaps 0,95 (just an arbitrary figure), but it would be completely flat across 0-180 degrees. From a reflected ENERGY point of view, then we could say that the total amount of reflected energy is lower compared to the ref sample. From a math point of view, the area under the curve (the integral from -90 to +90) is less that the ref sample.
Now lets try to look at your measurements.
Silver Fire. It peaks at zero degrees just a hair above 1.0 and falls drastically 0.5 at 30 deg. From an reflection point of view I would like to see that as a very bad screen. The relative amount of reflected light at its peak is virtually the same as the ref. And tons of light is "blocked" as soon you look from the side.
S-I-L-V-E-R. Now we are getting more total light(energy) back compared to Silver Fire, but still clearly less than the ref.
Thoughts:
1/ The Silver Fire might have superior ambient light properties. The GAIN chart works both ways. Light not coming straight in will be blocked. Right?
2/ Why is the totally reflected amount of energy not used as a "performance index" for a screen? RI=Reflection Index
3/ Is it possible, in theory, to get a screen that reflects MORE energy in total compared to the ref?
As I understand it a GAIN curve is the relative value of amount of reflected light from various angles in relation to a known ref sample of Magnesium Carbonate. So if I measure the ref sample two times and calculate the resulting GAIN I would get a 1.0 from 0-180 degrees, right? (I know, futile example but I am trying to make a point here, bare with me).
Now, lets try to do a new GAIN measurement, but with a perfect gray, say of N9. In my world that would then result in a somewhat lower value, perhaps 0,95 (just an arbitrary figure), but it would be completely flat across 0-180 degrees. From a reflected ENERGY point of view, then we could say that the total amount of reflected energy is lower compared to the ref sample. From a math point of view, the area under the curve (the integral from -90 to +90) is less that the ref sample.
Now lets try to look at your measurements.
Silver Fire. It peaks at zero degrees just a hair above 1.0 and falls drastically 0.5 at 30 deg. From an reflection point of view I would like to see that as a very bad screen. The relative amount of reflected light at its peak is virtually the same as the ref. And tons of light is "blocked" as soon you look from the side.
S-I-L-V-E-R. Now we are getting more total light(energy) back compared to Silver Fire, but still clearly less than the ref.
Thoughts:
1/ The Silver Fire might have superior ambient light properties. The GAIN chart works both ways. Light not coming straight in will be blocked. Right?
2/ Why is the totally reflected amount of energy not used as a "performance index" for a screen? RI=Reflection Index
3/ Is it possible, in theory, to get a screen that reflects MORE energy in total compared to the ref?